Supported LLM Providers
Overview
Archestra Platform acts as a security proxy between your AI applications and LLM providers. It currently supports the following LLM providers.
OpenAI
Supported OpenAI APIs
- Chat Completions API (
/chat/completions) - ✅ Fully supported - Responses API (
/responses) - ⚠️ Not yet supported (GitHub Issue #720)
OpenAI Connection Details
- Base URL:
http://localhost:9000/v1/openai/{agent-id} - Authentication: Pass your OpenAI API key in the
Authorizationheader asBearer <your-api-key>
Important Notes
- Use Chat Completions API: Ensure your application uses the
/chat/completionsendpoint (not/responses). Many frameworks default to this, but some like Vercel AI SDK require explicit configuration (add.chatto the provider instance). - Streaming: OpenAI streaming responses require your cloud provider's load balancer to support long-lived connections. See Cloud Provider Configuration for more details.
Anthropic
Supported Anthropic APIs
- Messages API (
/messages) - ✅ Fully supported
Anthropic Connection Details
- Base URL:
http://localhost:9000/v1/anthropic/{agent-id} - Authentication: Pass your Anthropic API key in the
x-api-keyheader
Google Gemini
Archestra supports both the Google AI Studio (Gemini Developer API) and Vertex AI implementations of the Gemini API.
Supported Gemini APIs
- Generate Content API (
:generateContent) - ✅ Fully supported - Stream Generate Content API (
:streamGenerateContent) - ✅ Fully supported
Gemini Connection Details
- Base URL:
http://localhost:9000/v1/gemini/{agent-id}/v1beta - Authentication:
- Google AI Studio (default): Pass your Gemini API key in the
x-goog-api-keyheader - Vertex AI: No API key required from clients - uses server-side Application Default Credentials (ADC)
- Google AI Studio (default): Pass your Gemini API key in the
Important Notes
- API Version: Archestra uses the
v1betaGemini API version for feature parity with the latest Gemini capabilities. - Tool Support: Function calling (tool use) is fully supported, including tool invocation policies and trusted data policies.
Using Vertex AI
To use Vertex AI instead of Google AI Studio, configure these environment variables:
| Variable | Required | Description |
|---|---|---|
ARCHESTRA_GEMINI_VERTEX_AI_ENABLED | Yes | Set to true to enable Vertex AI mode |
ARCHESTRA_GEMINI_VERTEX_AI_PROJECT | Yes | Your GCP project ID |
ARCHESTRA_GEMINI_VERTEX_AI_LOCATION | No | GCP region (default: us-central1) |
ARCHESTRA_GEMINI_VERTEX_AI_CREDENTIALS_FILE | No | Path to service account JSON key file |
GKE with Workload Identity (Recommended)
For GKE deployments, we recommend using Workload Identity which provides secure, keyless authentication. This eliminates the need for service account JSON key files.
Setup steps:
- Create a GCP service account with Vertex AI permissions:
gcloud iam service-accounts create archestra-vertex-ai \
--display-name="Archestra Vertex AI"
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:archestra-vertex-ai@PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/aiplatform.user"
- Bind the GCP service account to the Kubernetes service account:
gcloud iam service-accounts add-iam-policy-binding \
archestra-vertex-ai@PROJECT_ID.iam.gserviceaccount.com \
--role="roles/iam.workloadIdentityUser" \
--member="serviceAccount:PROJECT_ID.svc.id.goog[NAMESPACE/KSA_NAME]"
Replace NAMESPACE with your Helm release namespace and KSA_NAME with the Kubernetes service account name (defaults to archestra-platform).
- Configure Helm values to annotate the service account:
archestra:
orchestrator:
kubernetes:
serviceAccount:
annotations:
iam.gke.io/gcp-service-account: archestra-vertex-ai@PROJECT_ID.iam.gserviceaccount.com
env:
ARCHESTRA_GEMINI_VERTEX_AI_ENABLED: "true"
ARCHESTRA_GEMINI_VERTEX_AI_PROJECT: "PROJECT_ID"
ARCHESTRA_GEMINI_VERTEX_AI_LOCATION: "us-central1"
With this configuration, Application Default Credentials (ADC) will automatically use the bound GCP service account—no credentials file needed.
Other Environments
For non-GKE environments or when Workload Identity isn't available, set ARCHESTRA_GEMINI_VERTEX_AI_CREDENTIALS_FILE to the path of a service account JSON key file.